SYNTHESIS OF SOME NEW FUSED AND POLYFUSED [1,2,4]TRIAZOLO-[3,4-*b*][1,3,4]THIADIAZEPINES

O. A. Abd Allah

7-[1,3-Dithiolan-2-ylidene]-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine-6,8dione and 7-[5-oxo-1,3-dithiolan-2-ylidene]-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine-6,8-diones were obtained by treating 3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo-[3,4-b][1,3,4]thiadiazepine-6,8-diones with CS₂ and chloroacetyl chloride, respectively. Treatment of the above compounds with mercaptoacetic acid gave 1,2-dibromoethane or the corresponding spiro polyfused heterocycles. Some other triazolothiadiazepine derivatives including spiro polyfused compounds were also synthesized.

Keywords: 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazepines, spiro compounds.

The synthesis of [1,2,4]triazolo[3,4-b][1,3,4]thiadiazepines had been thoroughly studied and developed because of their important characteristics as antimicrobial and antibacterial agents [1-3]. From this point and starting with 3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine-6,8-dione first prepared by the author in [3], the synthesis of new polyfused compounds was the objective of this research.

One-pot reaction of 3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazepine-6,8-dione (1) [3] with equimolar ratios of CS_2 , dihalo compounds (1,2-dibromoethane or chloroacetyl chloride), and a double molar amount of NaOH gave compounds 2 or 3, respectively (Scheme 1). The reaction pathway was postulated to proceed through a nucleophilic addition of the active methylene group in compound 1 at the carbon disulfide molecule to get the intermediate disodium dithiocarbamate A, which in turn was cyclized with 1.2-dibromoethane chloroacetyl chloride, yielding 7-[1,3-dithiolan-2-ylidene]-3-phenyl-5,6,7,8or tetrahydro [1,2,4]triazolo [3,4-b] [1,3,4]thiadiazepine -6,8-dione (2) and 7-[1,3-dithiolane -5-oxo-2-ylidene]-3phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine-6,8-dione (3). With the same reaction mechanism and also in one-pot reaction under solid-liquid phase-transfer catalysis (PTC) [DMF-K₂CO₃tetrabutylammonium bromide (TBAB)], compound 1 was treated with an equimolar ratio of phenylisothiocyanate or phenylisocyanate and 1,2-dibromoethane, affording compounds 4a,b, respectively (Scheme 1, Table 1).

Spiro-polyfused derivatives **5** or **6** were prepared through nucleophilic addition of mercaptoacetic acid at the activated ethylenic double bond in compounds **2** or **4**, respectively. The reaction proceeds *via* a nucleophilic attack of the SH group of mercaptoacetic acid at the ethylenic double bond in compounds **2** or **3** followed by intramolecular cyclization through H₂O elimination to yield the condensed products **5** or **6**. The IR and ¹H NMR spectral data were consistent with the proposed structures (cf. Scheme 1). The

Chemistry Department, Faculty of Science, Sohag, Egypt; e-mail: omymatif@yahoo.com. Published in Khimiya Geterotsiklicheskikh Soedinenii, No. 8, 1256-1264, August, 2005. Original article submitted June 18, 2002; revision submitted June 8. 2005.

dithiomethylmethylene derivative 7 was prepared by the reaction of compound 1 with an equimolar ratio of CS_2 and with a double molar amount of both NaOH and methyl iodide. Compound 7 was used as a key intermediate in the preparation of heterocyclic system by the reaction with ethylenediamine to afford the corresponding 7-[1,3-imidazolo-2-ylidene-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazepine-6,8-dione] (8) (cf. Scheme 1, Table 1).

6 a X = S, **b** X = O; **9** X,Y = COOEt; **10 a** X,Y = CN, **b** X,Y = CONH,

Compounds
the New
Data of
Spectral
tical and
1. Analy
TABLE

	Yield,	0/	11	79	69	60	53	68	72	81	78
	¹ H NMR (DMSO-d ₆)* ⁴ , δ, ppm (<i>J</i> , Hz)		10	8.00 (1H, s, NH); 7.50-6.65 (5H, m, arom.); 3.59-3.10 (2H, t, <i>J</i> = 6, CH ₂); 2.86-2.53 (2H, t, <i>J</i> = 6, CH ₂)	8.15 (NH); 7.50-6.41 (5H, m, arom.); 2.81-2.52 (2H, d, <i>J</i> = 6, CH ₂)	7.88 (NH); 7.51-6.31 (10H, m, arom.); 2.80 (2H, t, $J = 2.4$, CH ₂); 2.70-2.61 (2H, t, $J = 1.2$, CH ₂)	7.75 (NH); 7.40-6.10 (10H, m, arom.); 2.81-2.70 (2H, $t, J = 6$, CH ₂); 2.65-2.58 (2H, $t, J = 6$, CH ₂)	7.52 (NH); 7.20-6.65 (5H, m, arom.); 3.70 (1H, s, CH); 3.31-2.91 (3H, t, $J = 8.4$, CH ₂); 2.90-2.41 (3H, t, J = 7.2, CH ₂); 1.14 (1H, s, OH)	7.85 (NH); 7.68-6.60 (5H, m, arom.); 3.00-2.58 (4H, d, <i>J</i> = 2.4, CH ₂)	7.62 (NH); 7.52-6.60 (5H, m, arom.); 2.76 (3H, s, CH ₃); 2.58 (3H, s, CH ₃)	7.50 (1H, s, NH); 7.10-6.31 (5H, m, arom.); 4.21 (2H, s, 2NH), 2.30-2.50 (4H, t, <i>J</i> = 7.2, 2CH ₂)
	IR (KBr), $v (cm^{-1})^{*3}$		6	3220 (NH); 3062, 2924 (CH); 1710, 1654 (2C=O)	3210 (NH); 3050, 2926 (CH); 1710, 1700, 1652 (3C=O)	3260 (NH); 3030, 2932 (CH);1715, 1658 (2C=O)	3300 (NH); 3057, 2935 (CH); 1710, 1653 (2C=O)	3421 (OH); 3200 (NH); 3030, 2924 (CH); 1710, 1632 (2C=O)	3210 (NH); 3066, 2924 (CH); 1730, 1700, 1642 (4C=0)	3320 (NH); 3030, 2960 (CH); 1710, 1650 (2C=O)	3423, 3270 (NH); 3033, 2926 (CH); 1725, 1637 (2C=O)
spun		S	7	$\frac{26.60}{26.54}$	<u>25.63</u> 25.55	<u>15.30</u> 15.21	<u>7.90</u>	<u>20.12</u> 20.01	<u>28.60</u> 28.47	$\frac{26.30}{26.39}$	<u>9.80</u> 9.77
/ Compo	, %* ² ited, %	Ν	6	$\frac{15.37}{15.46}$	<u>14.80</u> 14.88	$\frac{16.74}{16.62}$	$\frac{17.30}{17.27}$	$\frac{8.80}{8.74}$	$\frac{12.40}{12.44}$	$\frac{15.41}{15.37}$	<u>25.52</u> 25.59
the New	Found Calcula	Η	5	<u>2.87</u> 2.78	$\frac{2.23}{2.14}$	$\frac{3.69}{3.59}$	$\frac{3.80}{3.73}$	$\frac{2.00}{1.89}$	$\frac{2.20}{2.24}$	$\frac{3.25}{3.32}$	$\frac{3.60}{3.68}$
Data of		С	4	$\frac{46.50}{46.39}$	<u>44.60</u> 44.67	<u>57.21</u> 56.99	<u>59.37</u> 59.25	<u>30.16</u> 29.99	<u>42.85</u> 42.66	$\frac{46.15}{46.14}$	<u>51.42</u> 51.21
al and Spectral	Empirical	IUIIIIIIa (IVIw)	3	C ₁₄ H ₁₀ N ₄ O ₂ S ₃ (362.45)	$C_{14}H_8N_4O_3S_3$ (376.44)	C ₂₀ H ₁₅ N ₅ O ₂ S ₂ (421.51)	$C_{20}H_{15}N_{5}O_{3}S$ (405.44)	$C_{16}H_{12}N_4O_3S_4$ (640.83)	$C_{16}H_{10}N_4O_4S_4$ (450.54)	$C_{14}H_{12}N_4O_2S_3$ (364.47)	C ₁₄ H ₁₂ N ₆ O ₂ S (328.35)
E 1. Analytic:	mp, °C*	(UT yst. sulvetti)	2	201 DMF-H ₂ O	220 DMF-H ₂ O	160 DMF-H ₂ O	219 DMF-H ₂ O	142 DMF-H ₂ O	300 DMF-H ₂ O	300 DMF-H ₂ O	>300 DMF
TABLI	Com-	nimod	1	2	e	4a	4b	Ś	9	٢	*

(continued)
TABLE 1

11	83	79	85	68	59	56	60	61
10	9.8 (1H, s, NH); 7.42-6.62 (5H, m, arom.); 4.45-3.61 (2H, br, NH ₂); 3.30-2.61 (2H, q, CH ₂); 1.43-0.70 (3H, t, CH ₃)	8.80 (1H, s, NH); 8.00-6.95 (5H, m, arom.); 4.65-4.15 (2H, br, NH ₂)	8.12 (1H, s, NH); 7.75-6.65 (5H, m, arom.); 5.00-4.23 (4H, br, 2NH ₂)	8.10 (1H, s, NH); 8.00-7.00 (5H, m, arom.); 4.70-4.00 (3H, br, NH+NH ₂); 2.80 (1H, s, CH); 2.71 (2H, s, CH ₂)	8.18-7.90 (1H, br, NH); 7.48-6.60 (5H, m, arom.); 5.53 (1H, s, NH); 2.71 (1H, s, CH ₂); 2.41 (2H, s, CH ₂)	8.10 (1H, s, NH); 7.22-6.19 (5H, m, arom.); 4.00 (1H, s, CH); 3.92-3.09 (2H, q, $J = 18$, CH ₃); 1.30-0.91 (3H, t, $J = 7.2$, CH ₃)	8.59 (1H, s, NH); 7.32-6.90 (5H, m, arom.); 2.53 (1H, s, CH); 4.20-3.62 (2H, br, NH ₂)	8.00 (2H, s, 2NH); 7.41-6.80 (5H, m, arom.); 4.11 (1H, s, NH)
9	3480, 3400 (NH ₃); 3225 (NH); 3080, 2941 (CH); 1725, 1634 (2C=O)	3439, 3330 (NH ₂); 3230 (NH); 3033 (CH); 2203 (CN); 1641 (C=O)	3500, 3400 (NH ₂ , CONH ₂); 3020 (CH); 1640, 1635 (2C=O)	3420, 3332 (NH ₃): 3239, 3191 (2NH); 1720, 1629 (3C=O)	3322, 3300 (2NH); 3050, 2963 (CH); 1715, 1630 (2C=O); 1120 (C=S)	3439 (NH); 3130, 2990 (CH); 1720, 1645 (2C=O)	3317, 3217 (NHJ), 3195 (2NH); 1710, 1631 (2C=O)	3419-3390 (3NH); 3050, 2992 (CH); 1700, 1631 (2C=0); 1060 (C=S)
7	<u>17.11</u> 16.55	$\frac{18.73}{18.84}$	$\frac{17.98}{17.89}$	<u>9.70</u> 9.65	<u>17.00</u> 17.13	$\frac{10.20}{10.14}$	$\frac{11.00}{10.97}$	<u>25.41</u> 25.42
6	$\frac{18.72}{18.07}$	<u>24.61</u> 24.69	<u>23.51</u> 23.45	<u>25.30</u> 25.29	<u>22.34</u> 22.45	<u>17.71</u>	<u>19.36</u> 19.17	$\frac{22.30}{22.21}$
5	<u>3.56</u> 3.38	$\frac{2.28}{2.37}$	$\frac{2.80}{2.81}$	$\frac{3.40}{3.64}$	<u>2.83</u> 2.69	$\frac{3.80}{3.82}$	$\frac{4.06}{4.14}$	$\frac{2.60}{2.66}$
4	<u>50.06</u> 49.60	$\frac{49.63}{49.40}$	$\frac{46.75}{46.92}$	<u>47.34</u> 46.98	$\frac{45.10}{44.91}$	<u>53.34</u> 53.16	<u>49.53</u> 49.31	$\frac{41.45}{41.26}$
3	C ₁₆ H ₁₃ N ₅ O ₂ S ₂ (387.44)	$C_{14}H_8N_6OS_2$ (340.39)	$C_{14}H_{10}N_6O_2S_2$ (358.40)	C ₁₃ H ₁₂ N ₆ O ₃ S (332.36)	C ₁₄ H ₁₀ N ₆ O ₃ S ₂ (374.40)	C ₁₄ H ₁₂ N ₄ O ₃ S (316.34)	$C_{12}H_{10}N_6O_2S$ (292.32)	$C_{13}H_{10}N_6O_2S_3$ (378.46)
2	244 dioxane	>300 dioxane	>300 dioxane	310 dioxane	320 DMF-H ₂ O	>300 DMF	230 DMSO	>300 DMSO
1	6	10a	10b	11	12	13	14	15

(continued)	
TABLE 1	

10	57	70	68	59	76	79	81
6	8.20 (1H, s, NH); 7.35-6.57 (5H, m, arom.)	8.15 (1H, s, NH); 7.42-6.18 (5H, m, arom.); 3.92 (1H, s, NH); 3.11 (1H, s, NH); 2.88 (1H, s, CH); 2.18 (1H, s, NH)	8.82 (1H, s, NH); 7.51-6.32 (10H, m, arom.); 2.90 (1H, s, NH); 2.76 (1H, s, NH); 2.57 (1H, s, CH)	8.30 (1H, s, NH); 7,41-6.65 (5H, m, arom.); 4.81-4.22 (2H, br, NH ₂); 2.68 (1H, s, CH); 1.21 (1H, s, OH)	8.84 (1H, s, NH); 7.82-6.70 (9H, m, arom.); 5.10-4.22 (2H, br, NH ₂); 3.85 (1H, s, NH)	8.45 (1H, s, NH); 7.78-6.72 (9H, m, arom.); 3.68 (1H, s, NH); 3.00 (1H, s, NH); 2.55 (1H, s, CH)	8.50 (1H, s, NH); 8.00-7.98 (9H, m, arom.); 6.00 (2H, br, NH); 4.00 (1H, s, NH); 3.55 (1H, d, <i>J</i> = 1.2, CH); 3.12 (1H, d, <i>J</i> = 6, CH)
8	341 (NH); 3080 (CH); 2197, 2189 (2CN); 1700, 1637 (C=O)	3427-3280 (4NH); 3060, 2910 (CH); 2189 (CN); 1700, 1650 (2C=O)	3427, 3300, 3280 (3NH); 3048, 2928 (CH); 2193 (CN); 1710, 1655 (2C=O)	3510 (OH); 3427, 3360 (NH ₂ NH); 3050, 2920 (CH); 2193 (CN); 1710, 1700, 1640 (3C=O)	3425, 3325 (NH ₂ , 2NH); 3060, 2991 (CH); 2187 (CN); 1630 (2C=O)	3445-3365 (3NH); 3060, 2936 (CH); 2199 (CN), 1629 (C=O)	3500 (2NH); 3448, 3348 (NH ₂); 3150, 2950 (CH); 1685, 1640 (2C=O); 770 (C-Cl)
7	$\frac{10.00}{9.95}$	<u>9.00</u> 9.03	<u>7.60</u> 7.45	<u>15.33</u> 15.47	<u>7.00</u> 7.01	$\frac{13.81}{13.96}$	<u>6.69</u> 6.87
6	<u>26.26</u> 26.07	$\frac{31.70}{31.57}$	<u>26.00</u> 26.03	$\frac{20.37}{20.28}$	<u>21.45</u> 21.43	<u>21.25</u> 21.34	$\frac{18.00}{18.00}$
5	$\frac{1.79}{1.88}$	<u>2.64</u> 2.84	$\frac{3.15}{3.28}$	<u>2.49</u> 2.43	$\frac{3.00}{2.86}$	$\frac{2.76}{2.85}$	<u>3.35</u> 3.24
4	<u>52.17</u> 52.17	<u>47.71</u> 47.38	<u>55.83</u> 55.81	<u>46.50</u> 46.37	<u>57.76</u>	<u>55.00</u> 54.89	<u>54.15</u> 54.02
3	C ₁₄ H ₆ N ₆ O ₂ S (322.31)	C ₁₄ H ₁₀ N ₈ O ₂ S (354.36)	$C_{20}H_{14}N_8O_2S$ (430.45)	$C_{16}H_{10}N_6O_4S_2$ (414.42)	$C_{22}H_{13}N_7O_3S$ (457.47)	C ₂₁ H ₁₃ N ₇ O ₂ S ₂ (459.51)	C ₂₁ H ₁₅ ClN ₆ O ₃ S (466.96)
2	>300 DMF-H ₂ O	>300 DMF-H ₂ O	240 DMF-H ₂ O	216 DMF-H ₂ O	dec. 290 dioxane	300 dioxane	178 dioxane
1	16	17a	17b	18	19	20	21

* Uncorrected.

*² Satisfactory microanalyses; obtained C \pm 0.35%; H \pm 0.11%; N \pm 0.40%; S \pm 0.21%. *³ Measured on a Nicolet 710 FT-IR spectrophotometer. *⁴ Measured with a Varian EM 360L spectrometer at 60 MHz using TMS as an internal standard.

According to the Gewald reaction in the synthesis of numerous 2-aminothiophenes [4-6] by using onepot procedure, compound 1 reacted with sulfur and activated nitriles, namely, ethyl cyanoacetate, malononitrile, or cyanoacetamide in DMF and in the presence of Et_3N as a catalyst at room temperature yielding thiophenotriazolothiadiazepine derivatives 9, 10a,b, respectively. (cf. Scheme 1).

6,8-Dioxo-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazepine-7-acetohydrazide (11) was prepared by the reaction of compound 1 with chloroacetohydrazide and catalytic amount of Et₃N in boiling dioxane. Compound 11 was allowed to react with CS₂ and KOH to yield 3-phenyl-7-(5-thioxo-1,3,4-oxadiazol-2-ylmethylene)-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazepine-6,8-dione (12) (cf. Scheme 2).

7-[Ethoxymethylene]-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-*b*]-[1,3,4]-thiadiazepine-6,8-dione (13) was prepared in excellent yield through the condensation of compound 1 with ethyl orthoformate *via* the elimination of two EtOH molecules. The corresponding hydrazino derivative 14 was prepared by treating compound 13 with hydrazine hydrate. The product was cyclized with CS_2 through nucleophilic attack of the NH_2 group at CS_2 to form the SH group which in turn underwent a nucleophilic addition at the ethylenic double bond, yielding the spiro polyfused thiadiazolotriazolothiadiazepine derivative 15 in excellent yield.

6,8-Dioxo-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepin-7-ylidenemalononitrile (**16**) was obtained by treating compound **1** with dibromomalononitrile and double moles of Et₃N. The IR spectrum of this compound showed the presence of the adsorption bands corresponding to 2CN groups at 2197 and 2189 cm⁻¹ (Scheme 2).

The spiro polyfused pyrazolotriazolothiadiazepine derivatives 17a,b and thiophenotriazolothiadiazepine **18**, respectively, were prepared *via* the addition reaction of hydrazine hydrate, phenylhydrazine, or mercaptoacetic acid at the activated ethylenic double bond in compound **16** (cf. Scheme 2).

The active methylene group in compound 1 underwent a nucleophilic addition reaction at different activated ethylenic double bonds, namely, 2-oxo-2,3-dihydroindolylidenemalononitrile, benzothiazolidenenitrile, or *p*-chlorobenzylidenecyanoacetamide in boiling dioxane and catalytic amount of Et₃N to yield a new series of pyranotriazolothiadiazepine derivatives **19-21**, respectively (cf. Scheme 3). The reaction pathway was suggested to proceed *via* the addition of the active CH_2 group of compound 1 to the activated double bond of ylidenenitrile to yield the intermediate Michael adduct which was cyclized through the addition of the OH group at the cyano group. IR spectra of products **19-21** showed characteristic bands corresponding to NH_2 (3320-3450), NH (3500-3425) and CN (2199-2187). ¹H NMR spectra of the products are in agreement with the proposed structure.

EXPERIMENTAL

Synthesis of Compounds 2, 3 (General Procedure). A mixture of compound 1 (0.01 mol), CS_2 (0.01 mol), and NaOH (0.02 mol in 10 ml of water) in DMF (30 ml) was stirred for 4 h, 1,2-bromoethane or chloroacetyl chloride (0.01 mol) was added dropwise, and the mixture was stirred again for 4 h and poured into ice-cold water (300 ml). The resulting solid mass was filtered off, washed with water successively, dried, and recrystallized from the proper solvent.

Synthesis of Compounds 5, 6 (General Procedure). A mixture of compound 2 or 3 (0.01 mol) and mercaptoacetic acid (0.01 mol) in DMF (20 ml) was refluxed for 3 h. The reaction mixture was poured into cold water (200 ml). The separated product was filtered off, dried, and crystallized from the suitable solvent.

Synthesis of Compound 4a,b (General procedure). A mixture of anhydrous potassium carbonate (4 g), compound 1 (0.01 mol), and a catalytic amount of TBAB in DMF (20 ml) was treated with phenyl isothiocyanate or phenyl isocyanate (0.01 mol) and stirred for 1 h at room temperature. 1,2-Dibromoethane (0.01 mol) was added, and the mixture was stirred for an additional 4 h at room temperature. The reaction mixture was filtered, and the filtrate was added to ice-cold water (100 ml). The separated solid was filtered off and crystallized from the proper solvent.

Synthesis of Compound 7. A mixture of compound 1 (0.01 mol) in DMF (20 ml), CS_2 (0.01 mol), and NaOH (0.023 mol in 10 ml water) was stirred for 4 h. CH_3I (0.02 mol) was added, and the reaction mixture was stirred for an additional 4 h and poured into ice-cold water (200 ml). The precipitate was filtered off, dried, and crystallized from DMF–H₂O.

Synthesis of Compound 8. Ethylenediamine (0.002 mol) was added to a solution of compound 7 (0.002 mol) in DMF (20 ml). The reaction mixture was stirred at room temperature until the evolution of MeSH ceased. The reaction mixture was poured into ice-cold water (200 ml), and the separated solid was collected by filtration and crystallized from DMF–H₂O.

Synthesis of Compounds 9, 10a,b (General Procedure). A mixture of compound 1 (0.01 mol), sulfur (0.01 mol), and activated nitriles, namely, ethyl cyanoacetate, malononitrile, or cyanoacetamide (0.01 mol) in dioxane (30 ml) and a few drops of triethylamine was stirred for 6 h. The precipitate was collected by filtration and crystallized from the proper solvent to give compounds 9, 10a,b.

Synthesis of Hydrazide Derivative 11. Chloroacetohydrazide (0.01 mol) was added to a mixture of compound **1** (0.01 mol) and triethylamine (0.01 mol) in dioxane (20 ml). The reaction mixture was refluxed for 6 h, concentrated, and cooled. The precipitate was filtered off and crystallized from ethanol.

Synthesis of Compound 12. KOH (0.02 mol in 5 ml H_2O) was added to a solution of compound 11 (0.02 mol) in DMF (20 ml), the mixture was cooled, and CS_2 (0.022 mol) was added dropwise. The reaction mixture was refluxed until the evolution of H_2S ceased (~18 h). The mixture was cooled and poured into ice-cold water (200 ml) with several drops of dil. HCl. The resulting solid mass was filtered off, washed with water, dried and crystallized from DMF- H_2O .

Synthesis of Compound 13. A mixture of compound 1 (0.003 mol) and triethyl orthoformate (3 ml) was refluxed for 5 h in acetic anhydride (20 ml). The reaction mixture was concentrated and cooled. The precipitate was filtered off, washed with water, dried, and crystallized from acetic acid–H₂O.

Synthesis of Hydrazino Derivative 14. Hydrazine hydrate (0.02 mol) was added to a solution of compound 13 (0.02 mol) in DMF (20 ml). The reaction mixture was refluxed for 5 h, cooled, and added to ice-cold water (200 ml). The precipitate was filtered off and crystallized from DMF–H₂O.

Synthesis of Compound 15. A mixture of compound 14 (0.03 mol) and CS_2 (0.035 mol) in DMF (30 ml) was refluxed for 6 h. The separated solid was collected by filtration and crystallized from DMF.

Synthesis of Compound 16. A mixture of compound 1 (0.03 mol), dibromomalononitrile (0.03 mol), and Et_3N (0.06 mol) in dioxane (30 ml) was refluxed for 3 h. The reaction mixture was concentrated and filtered off while hot. The precipitate was dried, washed with water, and crystallized from DMF–H₂O.

Synthesis of Compounds 17a,b, 18 (General Procedure). Hydrazine hydrate, phenylhydrazine, or mercaptoacetic acid (0.01 mol) were added to a solution of compound 16 (0.01 mol) in DMF (20 ml). The reaction mixture was refluxed for 3 h. After cooling, the mixture was poured into ice-cold water (100 ml). The separated solid was filtered off, washed with water, dried, and crystallized from the proper solvent.

Synthesis of Compounds 19-21 (General Procedure). Equimolar amounts (0.01 mol) of compound 1 and the proper ylidenemalononitrile or *p*-chlorobenzylidenecyanoacetamide were dissolved in dioxane (30 ml), treated with two drops of Et_3N , and refluxed for 4 h. The reaction mixture was concentrated, the separated solid was filtered off, dried, and crystallized from the suitable solvent.

REFERENCES

- 1. M. Kidwai, P. Sapra, P. Misra, R. K. Sexena, and M. Singh, *Bioorg. Med. Chem.*, 9, 217 (2001).
- 2. B. S. Holla, B. Kalluraya, K. R. Sridhar, E. Drake, and L. M. Thomas, *Eur. J. Med. Chem. Chim. Ther.*, **29**, 4301 (1994).
- 3. A. B. A. G. Ghattas, O. A. Abd Allah, H. M. Moustafa, and A. A. Amer, *Egypt. J. Chem.*, **2**, 297 (2003).
- 4. O. A. Abd Allah, *Phosphorus*, *Sulfur and Silicon*, **177**, 2871 (2002).
- 5. S. M. Sherif, Monatsh. Chem., 127, 955 (1996).
- 6. F. Sauter, J. Frohlich, and E. K. Ahmed, *Monatsh. Chem.*, **127**, 319 (1996).
- 7. F. J. Tinney, W. A. Cetenko, J. J. Kerbleski, D. T. Connor, R. J. Sorenson, and D. J. Herzig, *J. Med. Chem.*, **24**, 878 (1981).